Statistiques, modélisation, fiabilité
Code UE : USEA12
- Cours
- 2 crédits
Responsable(s)
Anne-Laure BILLABERT
Catherine ALGANI
Public, conditions d’accès et prérequis
Notions de probabilités. Logiciel Matlab
L'avis des auditeurs
Les dernières réponses à l'enquête d'appréciation pour cet enseignement :
Objectifs pédagogiques
Définition des stratégies de modélisation et de simulation suivant le problème donné.
Compréhension des informations requises pour une modélisation discrète ou continue.
Familiarisation avec des algorithmes de simulation discrète et continue.
Initiation à la construction des simulations numériques.
Modélisation probabiliste : utilisation des lois de probabilités discrètes et continues pour la modélisation de processus en ingénierie. Tests de sélection des lois.
Maîtriser les techniques usuelles de l’inférence statistique.
Compréhension des informations requises pour une modélisation discrète ou continue.
Familiarisation avec des algorithmes de simulation discrète et continue.
Initiation à la construction des simulations numériques.
Modélisation probabiliste : utilisation des lois de probabilités discrètes et continues pour la modélisation de processus en ingénierie. Tests de sélection des lois.
Maîtriser les techniques usuelles de l’inférence statistique.
Compétences visées
Maîtriser les notions :
- des variables aléatoires
- d’optimisation
- d’estimation Statistique et fiabilité
Contenu
1. Statistiques descriptives. vocabulaire de la statistique. Données statistiques. Représentations graphiques. Valeurs caractéristiques associées à une distribution statistique. Le mode. La médiane. Paramètre de dispersion. Paramètre de forme.
2. Rappels sur les lois usuelles en probabilités. Loi faible des grands nombres. Théorème central limite. Utilisation des tables statistiques. Approximations par la loi Normale. Approximation par la loi de Poisson.
3. Algorithmes de simulation des lois usuelles. Méthode d’inversion. Méthode de rejet. Simulation de mixture de lois.
4. Estimation statistique. modèles paramétriques. La vraisemblance. Estimateurs. Estimateurs sans biais. Estimateurs consistants. Estimateurs consistants en moyennes quadratique. Fonction de risque. Estimateur du maximum de vraisemblance. Estimateur de la méthode des moments. Information de Fisher. Estimateurs efficaces. Intervalle de confiance. Intervalles de confiance pour les paramètres de la loi Normale. Normalité asymptotique. Intervalle de confiance asymptotique. Estimateurs de Bayes.
5. Tests statistiques. Construction d’un test statistique. Tests simples. Tests composés. Test de moyenne de la loi Normale avec variance connue ou inconnue. Test de variance de la loi Normale avec moyenne connue et inconnue. Test d’une proportion. Test de comparaison de deux moyennes. Test de comparaison de deux proportions. Tests d’ajustement du chi-deux. Test d’indépendance.
6. Etudes de quelques modèles particuliers. Modèles de détection de Rupture. Simulation d’un modèle de détection de Rupture. Chaînes de Markov. Modèles ARMA
2. Rappels sur les lois usuelles en probabilités. Loi faible des grands nombres. Théorème central limite. Utilisation des tables statistiques. Approximations par la loi Normale. Approximation par la loi de Poisson.
3. Algorithmes de simulation des lois usuelles. Méthode d’inversion. Méthode de rejet. Simulation de mixture de lois.
4. Estimation statistique. modèles paramétriques. La vraisemblance. Estimateurs. Estimateurs sans biais. Estimateurs consistants. Estimateurs consistants en moyennes quadratique. Fonction de risque. Estimateur du maximum de vraisemblance. Estimateur de la méthode des moments. Information de Fisher. Estimateurs efficaces. Intervalle de confiance. Intervalles de confiance pour les paramètres de la loi Normale. Normalité asymptotique. Intervalle de confiance asymptotique. Estimateurs de Bayes.
5. Tests statistiques. Construction d’un test statistique. Tests simples. Tests composés. Test de moyenne de la loi Normale avec variance connue ou inconnue. Test de variance de la loi Normale avec moyenne connue et inconnue. Test d’une proportion. Test de comparaison de deux moyennes. Test de comparaison de deux proportions. Tests d’ajustement du chi-deux. Test d’indépendance.
6. Etudes de quelques modèles particuliers. Modèles de détection de Rupture. Simulation d’un modèle de détection de Rupture. Chaînes de Markov. Modèles ARMA
Modalité d'évaluation
Contrôle continu, Devoirs surveillés, projet à réaliser avec le logiciel Matlab
Bibliographie(s) :
Ghorbanzadeh.D. (1998). Probabilités. Exercices corrigés. Éditions Technip,Paris
Bibliographie(s) :
Ghorbanzadeh.D. (1998). Probabilités. Exercices corrigés. Éditions Technip,Paris
Cette UE apparaît dans les diplômes et certificats suivants
Rechercher une formation
RECHERCHE MULTI-CRITERES
Plus de critères de recherche sont proposés:
-
Vous pouvez sélectionner des formations, en recherchant une chaîne de caractères présente dans l’intitulé ou dans les index (discipline ou métier visé): ex: "documenta".
Des index sont suggérés à partir du 3e caractère saisi, mais vous pouvez aussi saisir librement tout autre mot . - Les différents items sélectionnés sont croisés.
ex: "Comptabilité" et "Région Grand Est"
- Cette recherche s'effectue à travers toutes les fiches formation, y compris régionales. Les codes de ces dernières se distinguent par le suffixe de la région (ex: «-PDL pour Pays-de-la-Loire» ).
Par défaut, les fiches régionales reprennent le contenu de la fiche nationale correspondante, mais dans certains cas, comportent des informations spécifiques. - Certains diplômes se déclinent selon plusieurs parcours (codés à la fin: A, B,...). Pour afficher tous les parcours, tapez la racine du code (ex : « LG035 »).
- Dans tous les cas, veillez à ne pas insérer d'espace ni de caractère séparateur.
Plus de critères de recherche sont proposés:
- Type de diplôme
- Niveau d'entrée
- Modalité de l'enseignement
- Programmation semestrielle
Chargement du résultat...
Intitulé de la formation |
Type |
Modalité(s) |
Lieu(x) |
|
---|---|---|---|---|
Type
Diplôme d'ingénieur
|
Lieu(x)
Alternance
|
Lieu(x)
La Plaine Saint-Denis
|
||
Type
Diplôme d'ingénieur
|
||||
Intitulé de la formation | Type | Modalité(s) | Lieu(x) |
Contact
EPN - Secrétariat EASY
292 Rue Saint Martin 11 B2 36
75003 Paris
Tel :01 40 27 24 81
Virginie Dos Santos Rance
292 Rue Saint Martin 11 B2 36
75003 Paris
Tel :01 40 27 24 81
Virginie Dos Santos Rance
Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.
Enseignement non encore programmé
Code UE : USEA12
- Cours
- 2 crédits
Responsable(s)
Anne-Laure BILLABERT
Catherine ALGANI
Dans la même rubrique
- Accueil
- Actualités de la formation
- Comment se former et se financer?
- Rechercher par discipline
- Rechercher par métier
- Rechercher par région
- Catalogue national des formations
- Catalogue de la formation ouverte à distance
- Catalogue des stages
- Catalogue de l'alternance
- Valider ses acquis
- Notre engagement qualité
- Micro-certifications