Apprentissage statistique : modélisation descriptive et introduction aux réseaux de neurones
Code UE : RCP208
- Cours
- 6 crédits
- Volume horaire de référence
(+ ou - 10%) : 50 heures
Responsable(s)
Michel CRUCIANU
Public, conditions d’accès et prérequis
Cet enseignement s'adresse aux auditeurs souhaitant acquérir des connaissances de base sur l'analyse des données, la reconnaissance des formes et la fouille de données (data mining).
Prérequis obligatoires : avoir suivi le cycle préparatoire de l'EICNAM ou avoir un niveau équivalent (licence).
Prérequis obligatoires : avoir suivi le cycle préparatoire de l'EICNAM ou avoir un niveau équivalent (licence).
L'avis des auditeurs
Les dernières réponses à l'enquête d'appréciation pour cet enseignement :
Présence et réussite aux examens
Pour l'année universitaire 2022-2023 :
- Nombre d'inscrits : 135
- Taux de présence à l'évaluation : 61%
- Taux de réussite parmi les présents : 52%
Objectifs pédagogiques
Ce cours donne des éléments de base de l'analyse des données et de la modélisation descriptive, ainsi que des principes à mettre en œuvre pour traiter des applications réelles. Une introduction à la modélisation décisionnelle avec des réseaux de neurones est également présentée. L'analyse des données et la modélisation descriptive aident à comprendre les données empiriques issues de phénomènes naturels, économiques ou socio-culturels. Cette compréhension facilite la mise en œuvre de méthodes performantes de construction de modèles décisionnels.
Les méthodes abordées ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, les enquêtes d'opinion, le marketing, la gestion de la relation client, la climatologie, la sécurité, etc.
L'enseignement adopte une approche pragmatique, les séances de travaux pratiques permettant la mise en œuvre systématique des méthodes présentées.
Les unités d'enseignement RCP209 « Apprentissage statistique : modélisation décisionnelle et apprentissage profond », RCP211 « Intelligence artificielle avancée » et RCP217 « Intelligence artificielle pour des données multimédia » sont des suites recommandées de RCP208.
Les méthodes abordées ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, les enquêtes d'opinion, le marketing, la gestion de la relation client, la climatologie, la sécurité, etc.
L'enseignement adopte une approche pragmatique, les séances de travaux pratiques permettant la mise en œuvre systématique des méthodes présentées.
Les unités d'enseignement RCP209 « Apprentissage statistique : modélisation décisionnelle et apprentissage profond », RCP211 « Intelligence artificielle avancée » et RCP217 « Intelligence artificielle pour des données multimédia » sont des suites recommandées de RCP208.
Compétences visées
Analyse des données, modélisation descriptive à partir de données, introduction à la modélisation décisionnelle avec application à la reconnaissance des formes et à la fouille de données.
Contenu
Les thèmes abordés dans les séances de cours et de travaux pratiques (TP) sont :
Les TP sont réalisés en utilisant principalement la plateforme Scikit-learn. Une introduction rapide au langage Python, à NumPy, à matplotlib et à Scikit-learn est prévue lors des premières séances de TP.
- Applications, nature des problèmes de modélisation et spécificités des données.
- Analyse des données, réduction de dimension : méthodes factorielles.
- Réduction non-linéaire de dimension : UMAP, t-SNE.
- Sélection de variables.
- Classification automatique : k-moyennes, DBSCAN.
- Estimation de densités : noyaux, modèles de mélange.
- Imputation des données manquantes.
- Réseaux de neurones multi-couches : architectures, capacités d'approximation, apprentissage et régularisation, explicabilité.
Les TP sont réalisés en utilisant principalement la plateforme Scikit-learn. Une introduction rapide au langage Python, à NumPy, à matplotlib et à Scikit-learn est prévue lors des premières séances de TP.
Modalité d'évaluation
Examen ; certaines questions peuvent porter sur les travaux pratiques.
Bibliographie
- A. Belaid, Y. Belaid : Reconnaissance des formes : méthodes et applications. Ed. Inter Editions.
- G. Dreyfus, et al : Réseaux de neurones : méthodologies et applications. Ed. Eyrolles.
- M. Crucianu, J.-P. Asselin de Beauville, R. Boné : Méthodes factorielles pour l'analyse des données : méthodes linéaires et extensions non-linéaires. Ed. Hermès.
- G. Saporta : Probabilités, analyse des données et statistique. Ed. TECHNIP.
- D.J. Hand, H. Mannila, P. Smyth : Principles of Data Mining (Adaptive Computation and Machine Learning). Ed. Bradford Book.
Cette UE apparaît dans les diplômes et certificats suivants
Rechercher une formation
RECHERCHE MULTI-CRITERES
Plus de critères de recherche sont proposés:
-
Vous pouvez sélectionner des formations, en recherchant une chaîne de caractères présente dans l’intitulé ou dans les index (discipline ou métier visé): ex: "documenta".
Des index sont suggérés à partir du 3e caractère saisi, mais vous pouvez aussi saisir librement tout autre mot . - Les différents items sélectionnés sont croisés.
ex: "Comptabilité" et "Région Grand Est"
- Cette recherche s'effectue à travers toutes les fiches formation, y compris régionales. Les codes de ces dernières se distinguent par le suffixe de la région (ex: «-PDL pour Pays-de-la-Loire» ).
Par défaut, les fiches régionales reprennent le contenu de la fiche nationale correspondante, mais dans certains cas, comportent des informations spécifiques. - Certains diplômes se déclinent selon plusieurs parcours (codés à la fin: A, B,...). Pour afficher tous les parcours, tapez la racine du code (ex : « LG035 »).
- Dans tous les cas, veillez à ne pas insérer d'espace ni de caractère séparateur.
Plus de critères de recherche sont proposés:
- Type de diplôme
- Niveau d'entrée
- Modalité de l'enseignement
- Programmation semestrielle
Chargement du résultat...
Contact
EPN05 - Informatique
2 rue Conté
75003 Paris
Tel :01 40 27 22 58
Swathi RANGANADIN RAJASELVAM
2 rue Conté
75003 Paris
Tel :01 40 27 22 58
Swathi RANGANADIN RAJASELVAM
Voir le site
Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.
UE
-
-
Paris
-
Paris
- 2024-2025 2nd semestre : Formation ouverte et à distance (FOAD)
- 2026-2027 2nd semestre : Formation ouverte et à distance (FOAD)
Comment est organisée cette formation ?2024-2025 1er semestre : Formation en présentiel soir ou samedi
Dates importantes
- Période des séances du 16/09/2024 au 18/01/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 18/10/2024 à 23:59
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation en présentiel est dispensée dans un lieu identifié (salle, amphi ...) selon un planning défini (date et horaire).
2024-2025 2nd semestre : Formation ouverte et à distance
Dates importantes
- Période des séances du 03/02/2025 au 07/06/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 14/03/2025 à 17:00
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation ouverte et à distance (FOAD) est une formation dispensée 100% à distance, qui peut être suivie librement, à son rythme.
- Regroupements physiques facultatifs : Aucun
Organisation du déploiement de l'unité
- Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)
Modes d'animation de la formation
- Forum
- Visioconférence
- Organisation d'une séance de démarrage
- Evaluation de la satisfaction
- Hot line technique
Ressources mises à disposition sur l'Espace Numérique de Formation
- Documents de cours
- Enregistrement de cours
- Bibliographie et Webographie
- TP en ligne
Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)
- Examens présentiels dans un centre habilité
-
Centre Cnam Paris
- 2024-2025 1er semestre : Formation en présentiel soir ou samedi
- 2025-2026 1er semestre : Formation en présentiel soir ou samedi
- 2026-2027 1er semestre : Formation en présentiel soir ou samedi
Comment est organisée cette formation ?2024-2025 1er semestre : Formation en présentiel soir ou samedi
Dates importantes
- Période des séances du 16/09/2024 au 18/01/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 18/10/2024 à 23:59
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation en présentiel est dispensée dans un lieu identifié (salle, amphi ...) selon un planning défini (date et horaire).
2024-2025 2nd semestre : Formation ouverte et à distance
Dates importantes
- Période des séances du 03/02/2025 au 07/06/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 14/03/2025 à 17:00
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation ouverte et à distance (FOAD) est une formation dispensée 100% à distance, qui peut être suivie librement, à son rythme.
- Regroupements physiques facultatifs : Aucun
Organisation du déploiement de l'unité
- Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)
Modes d'animation de la formation
- Forum
- Visioconférence
- Organisation d'une séance de démarrage
- Evaluation de la satisfaction
- Hot line technique
Ressources mises à disposition sur l'Espace Numérique de Formation
- Documents de cours
- Enregistrement de cours
- Bibliographie et Webographie
- TP en ligne
Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)
- Examens présentiels dans un centre habilité
-
Paris
-
Paris
Code UE : RCP208
- Cours
- 6 crédits
- Volume horaire de référence
(+ ou - 10%) : 50 heures
Responsable(s)
Michel CRUCIANU
Dans la même rubrique
- Accueil
- Actualités de la formation
- Comment se former et se financer?
- Rechercher par discipline
- Rechercher par métier
- Rechercher par région
- Catalogue national des formations
- Catalogue de la formation ouverte à distance
- Catalogue des stages
- Catalogue de l'alternance
- Valider ses acquis
- Notre engagement qualité
- Micro-certifications