Usage des large Language Models et du deep learning en assurance/finance

Code UE : ACT209

  • Cours + travaux pratiques
  • 2 crédits
  • Volume horaire de référence
    (+ ou - 10%) : 22 heures

Responsable(s)

Public, conditions d’accès et prérequis

Le public visé est principalement les apprenantes et apprenants du master actuariat et du master finance du Cnam. Les professionnels actuaires et des secteurs de l'assurance et de la finance désireux de comprendre quels sont les cas d'usage du deep learning et des LLM en assurance finance sont également visés. Il convient d’avoir de solides notions en mathématiques, statistiques et programmation (Python). Il est possible de se former en Python grâce à l'UE 109 en cas de besoin pour les actuaires, et en contactant Iryna Veryzhenko pour les professionnels de la finance.
Il faudra aussi être familier avec certains concepts d’assurance, de finance et d’analyse de données.

Objectifs pédagogiques

Découvrir les cas d'usage de mise en œuvre des techniques de préparation de données, Machine Learning et Deep Learning dans des contextes assurance, finance et actuariat.
Comprendre et savoir exploiter les LLM (Large Language Models) pour développer des cas d’IA Génératives ou d’argentique en assurance, finance et actuariat.

Mots-clés

Contenu

Chapitre 1 – Cas d'usage du Deep Learning en Assurance & Finance
1. Introduction
1.1 L’IA en assurance
  *   Rappels
  *   Exemples
1.2 Avantages et principes de fonctionnement
  *   Vue d’ensemble
  *   Actuaires
  *   Identifier des projets
1.3 Points d’attention
  *   Données
  *   Modèle
  *   Facteur humain
  *   Aspect IT
2. Collecter et préparer les données
2.1 Enrichir la collecte de données
  *   Parsing
  *   API (Zonage & Risque d’incendie)
  *   Open Data (Services GeoData)
2.2 Contrôler et améliorer la qualité
  *   Imputation
  *   Gestion des valeurs aberrantes (Qualité des données pour la modélisation du capital)
  *   Augmentation (Données synthétiques pour la détection de fraude)
2.3 Modifier, améliorer, enrichir
  *   Sélection
  *   Transformation (Extraction d’entités pour la tarification cyber)
  *   Extraction (Détection d’arbres pour l’analyse de la sécheresse)
3. Analyser et prédire
3.1 Améliorer la régression et la classification
  *   Régression (Tarification pour l’assurance voyage)
  *   Classification (Estimation du coût d’une tempête)
3.2 Identifier des schémas sous-jacents
  *   Réduction de dimension (Optimisation temporelle pour le Best Estimate Liability - BEL)
  *   Clustering (Segmentation pour les provisions IARD)
3.3 Approfondir avec des techniques avancées
  *   Deep learning (Prévision SWI pour le risque de sécheresse)
  *   Différents types d’architectures
  *   Autres notions (Gestion de l’incertitude pour les coûts de sinistres)
4. Notebooks et démonstrations
 
Chapitre 2 – Cas d'usage des LLM en Assurance & Finance
Qu’est-ce que c’est ?
1.1 Présentation
1.2 Liste de LLM
1.3 Spécifications
1.4 Évaluations
1.5 Descriptions
1.6 Avantages
1.7 Inconvénients
1.8 Tâches
1.9 Cas d’utilisation
Cas 1 : Extraire et résumer des informations contractuelles via des prompts
Comment l’utiliser ?
2.1 Concept principal
2.2 Données
2.3 Prompting
2.4 RAG
2.5 Agent
2.6 PEFT
2.7 Fine-tuning complet
2.8 Écosystème
Cas 2 : Questionner et discuter avec des rapports financiers grâce à la RAG
Prochaines étapes & préoccupations
3.1 Par où commencer
3.2 Défis
3.3 Cas d’utilisation
Cas 3 : Explorer les causes d’accidents de transport grâce au chaining, à la RAG et au CoT
Plannings de cette UE et du M1/M2 actuariat, ainsi que tarification disponibles sur le bandeau de droite de la page: https://actuariat.cnam.fr/unites-d-enseignement/

Modalité d'évaluation

Projet à rendre en fin de 1er semestre (100% de la note, pas de soutenance).
Pas de 2ème session pour cette UE.

Cette UE apparaît dans les diplômes et certificats suivants

Chargement du résultat...
Patientez
Intitulé de la formation
Type
Modalité(s)
Lieu(x)
Lieu(x) Package
Lieu(x) Paris
Intitulé de la formation Type Modalité(s) Lieu(x)

Contact

EPN09 - Actuariat
292 rue Saint Martin
75003 Paris
Tel :01 58 80 87 56
Melinda Dupuis
Voir le site

Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.

Enseignement non encore programmé